
International Journal of Heat and Mass Transfer 52 (2009) 1472–1480
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
On the bubble departure diameter and release frequency based
on numerical simulation results

Gabor Hazi *, Attila Markus
MTA KFKI Atomic Energy Research Institute, Theoretical Thermohydraulics Research Group, H-1525 Budapest, Hungary
a r t i c l e i n f o

Article history:
Received 18 July 2008
Available online 12 November 2008

Keywords:
Nucleate boiling
Bubble departure diameter
Bubble release frequency
Lattice Boltzmann method
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.09.003

* Corresponding author.
E-mail addresses: gah@aeki.kfki.hu (G. Hazi), amar
a b s t r a c t

Heterogeneous boiling on a horizontal plate in stagnant and slowly flowing fluid is simulated using the
lattice Boltzmann approach. The bubble departure diameter and release frequency are determined from
the simulation results. It is found that the bubble departure diameter is proportional to g�1/2 in a stagnant
fluid and the release frequency scales with g3/4, where g is the gravitational acceleration. Simulation
results show no dependence between the bubble departure diameter and the static contact angle, but
the bubble release frequency increases exponentially with the latter. Considering forced boiling, expo-
nential relation is observed between the bubble departure diameter and the flow driving pressure
gradient.
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1. Introduction

Departure from nucleate boiling (DNB) is the main governing
critical heat flux mechanism in pressurized water nuclear reactors.
According to Bestion et al. [3] the phenomenology of convective
boiling and DNB is very complex and many of small scale pro-
cesses, which finally lead to DNB (activation of nucleation sites,
growing of attached bubbles, detachment of the bubbles, etc.) are
not well understood. Thus, detailed investigation of those pro-
cesses is needed to improve our understanding and the predictive
capabilities of large scale industrial two-phase flow simulation
tools. According to Dhir’s recent review [9], despite substantial
efforts made in the last 70 years, we do not yet have a comprehen-
sive model for the subprocesses build up a global nucleate boiling
process. In this work one of those subprocesses, namely the bubble
departure is analyzed based on numerical simulation results. To be
more specific, we study the bubble departure diameter and release
frequency, two key quantities in the puzzle of determining the
nucleate boiling heat flux. A bubble attaching, growing on and
departing from a heated wall have been studied very intensively
using analytical [12,6], numerical [1,4,10,11,13,14,24,27,29,
31–34,39,40,47] and measurement [28,8,2,46,23,41] techniques.
Considering the numerical approach, several models have been
developed to study the growing process. Many of these models di-
vide the geometrical domain into parts around a growing bubble
using different transfer models for the so-called micro- and
macro-regions (see e.g. [11]) or simplify the problem, assuming
for instance, saturated liquid at the bubble dome [31]. Beside these
ll rights reserved.
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approximations, the liquid–vapor interface has usually been
tracked by some level-set method (see e.g. [11]). In the present
work, a new method is proposed to simulate nucleate boiling with-
out using any of the above-mentioned simplifications. The method
is based on the pseudo-potential extension of the lattice Boltz-
mann equation and it is extended with an energy transfer equation
to model heat transfer. The wettability of the heated wall is mod-
eled by an interaction force between the solid wall and the fluid.
Using this method, growing bubble on a heated surface is simu-
lated both in stagnant and slowly flowing fluid. The diameter of
the bubble at departure and the bubble release frequency are
determined from the simulation results. Relations between these
quantities and gravity, fluid velocity, wettability are established
based on the numerical data.

2. The lattice Boltzmann method

2.1. Mass and momentum conservation equations

The lattice Boltzmann method (LBM) is an innovative technique
for modeling two-phase flows. Many different models have been
developed in the framework of LBM to model bubbly flows see
e.g. [36,37,21,22,26], or [43]. In this work the multiphase model
of Shan and Chen was adopted [38] and extended to model heter-
ogeneous boiling. For completeness, here we give a brief review on
the base method. To model multiphase flows, Shan and Chen pro-
posed [38] to solve the lattice Boltzmann equation with Bhatna-
gar–Gross–Krook collision operator [5]

fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼ �
1

fi � f eq
i

� �
; ð1Þ
s
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Fig. 1. Coexistence curve or binodal for the fluid modeled.
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where fi(x, t) is the one-particle velocity distribution function, ci is
the lattice velocity vector, s is the relaxation time which controls
the rate of approach to the local equilibrium f eq

i ðx; tÞ and Dt is the
timestep.

The local equilibrium distribution is written as

f eq
i ¼ wiq 1þ 3ciaueq

a �
3
2

ueq
a ueq

a þ
9
2

ciacibueq
a ueq

b

� �
; ð2Þ

which is a low Mach number expansion of the Maxwell–Boltzmann
distribution.

For the calculations presented in this paper we used a two-
dimensional nine-velocity (D2Q9) model, for which the lattice
velocity vectors ci and weights wi are defined by

ci ¼
ð0; 0Þ i ¼ 0;
ð�1;0Þ; ð0;�1Þ i ¼ 1:4;
ð�1;�1Þ i ¼ 5:8

8><>: ; wi ¼
4=9 i ¼ 0;
1=9 i ¼ 1:4;
1=36 i ¼ 5:8:

8><>: ð3Þ

The density and hydrodynamic velocity of the fluid are given as
follows:

q ¼
X

i

fi;uaq ¼ u0aqþ 1=2DtFa; ð4Þ

where

u0a ¼
X

i

ciafi; ð5Þ

and the force Fa will be defined later on. The velocity used in the
equilibrium distribution function (2) is calculated from

ueq
a ¼ u0a þ

s
q

Fa: ð6Þ

It can be shown that the mesoscopic evolution of the particle distri-
bution functions (1), yields the macroscopic equations [7]

otqþ obðqubÞ ¼ 0; ð7Þ

otua þ ubobua þ
1
q

oa
q
3

� �
� Fa

h i
¼ mo2

bua; ð8Þ

with some error terms, which can be neglected at low Mach num-
bers or can be partially compensated at higher velocities [16].

That is we solve the Navier–Stokes equations in which the vis-
cosity is given by

m ¼ c2
s D s� 1

2

� 	
; ð9Þ

and the force Fa determines the equation of state of the fluid.

2.2. Equation of state, binodal and surface tension

In order to model non-ideal gases and surface tension we need
to choose a proper form for Fa. Shan and Chen proposed to calcu-
late the force as the gradient of a particle interaction potential w
[38]. In this work the same methodology was used, but a new form
for the interaction potential was implemented:

w ¼ q
T þ C1q

: ð10Þ

Analytical results show that using this potential, Maxwell equal
area construction, a requirement for thermodynamic consistency,
can be satisfied in case of a flat liquid–vapor interface [17]. In
(10) the parameter T plays the role of temperature and C1 is a
parameter, which can be used to control the surface tension.

The interaction force is calculated as the gradient of the pseudo-
potential, which can be approximated in the lattice Boltzmann
framework as

Fa ¼ �wðxÞ
X

i

wiwðxþ ciÞci: ð11Þ
Using the above form of the force a fluid with the equation of state

p ¼ 1
3

qþ 1
2

w2
� 	

ð12Þ

can be modeled. As a straightforward demonstration of this fact one
can set the initial density of the fluid between the spinodals of a
given temperature and then phases must separate from each other
by spinodal decomposition as far as a small amount of temperature
or density noise is present, since the fluid is in the region oq

op < 0
� �

.
Depending on the initial conditions, the final state of such simula-
tions is a flat interface which separates the individual phases or a
spherical object (bubble or drop) surrounding by the complementer
phase. After separation and the formation of a flat interface the
phase densities correspond to the coexistence curve or binodal.
The pressure is the same in the bulk phases and Maxwell’s equal
area construction is satisfied if the model is thermodynamically
consistent. For the present model, the coexistence curve is shown
in Fig. 1, where symbols represent simulation results and the solid
line is calculated from the equation of state in accordance with
Maxwell’s equal area construction. Obviously, the agreement is
excellent, as it expected from our analytical calculations [17].

The critical density and temperature of the fluid modeled can be
calculated from the equations of state and they are given as

qc ¼ �
2G

27C2
1

; Tc ¼ �
4G

27C1
:

Throughout this paper we will use these critical values to have non-
dimensional temperature and density. Mass, spatial and temporal
dependent quantities are made non-dimensional dividing by one
mass, lattice or timestep units, respectively. Although it is not given
explicitly (see Eq. (8)), this model also represents surface tension.
Actually, it is a consequence of the numerical approximation of
the potential gradient as it can be shown by Taylor expanding the
interaction force. However, instead of tedious analytical calcula-
tions we can calculate the surface tension in a straightforward man-
ner using the results of numerical simulations. Setting up a low
density circular region surrounded by a high density region at the
center of a double periodic domain, the system evolves to a stable
state. When the densities are near the binodals of an isotherm
and the initial ‘‘bubble” diameter exceeds the critical radius [42] a
stable bubble is formed in steady state. At this stage the surface ten-
sion can be determined from the pressure difference between the
liquid and gas phases and from the bubble diameter according to
Laplace’s law. Surface tensions calculated in this way at different
temperatures are shown in Fig. 2.



Fig. 2. Dimensionless surface tension for the fluid modeled at various temperatures
(triangle – T = 0.748, circle – T = 0.8, and square – T = 0.88).
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It is worth noting that Fig. 2 shows also the temperature depen-
dency of the surface tension and that the latter has a weak linear
relation with the bubble radius as one expects.

2.3. Energy equation

The method presented before can be used to model isothermal
two-phase flow problems and introducing thermodynamic fluctu-
ations, the method is also able to simulate homogenous nucleation
[35,18]. To model such processes we need to initiate the system in
a stable state (saturated liquid) and the thermodynamic fluctua-
tions need to be high enough to drive the system locally into the
metastable region. Then phase transition can occur. Note, however,
that the metastable state is between the spinodals, so the fluctua-
tions must high enough to achieve this region. Therefore, in order
to model boiling in a real fluid, like water by this method we need a
specific equation of state (modified between the binodals) and we
need a corresponding potential given in analytical form. The devel-
opment of such potential is in progress and results obtained for
water will be published in the future. Here we limit the scope of
our discussion to a model fluid defined by the equation of state
(12). Considering heterogeneous boiling the model has to be sup-
plemented by a transport equation for energy. There are two basic
approaches to model thermal problems by the lattice Boltzmann
method. Using the first approach one introduces energy conserva-
tion in mesoscopic level, defining the energy as the second mo-
ment of the distribution functions. Although this is a very
attractive approach, all attempts before shown limited modeling
capabilities because of numerical stability problems. It is worth
noting that increasing the number of lattice links the stability of
thermal models can be improved but this strategy leads to unac-
ceptable computational demand considering the simulation of
practical problems. Therefore, here we follow the second approach
and make a thermal coupling in macroscopic level. It means that
we define a second set of distribution functions gi, which evolves
according to the lattice Boltzmann equation

giðxþ ciDt; t þ DtÞ � giðx; tÞ ¼ �
1
j

gi � geq
i

� �
�wiDtq; ð13Þ

where the equilibrium distribution is given as follows:

geq
i ¼ wi T þ 3ciaðTua � DToaTÞ½ �: ð14Þ

We define the temperature as the following moment:

T ¼
X

i

gi: ð15Þ
Performing a Chapman–Enskog expansion it can be shown [19] that
the above evolution equation leads to the solution of the macro-
scopic equation

otT þ oaðuaTÞ ¼ oa
eDToaT
� �

� q; ð16Þ

where the thermal diffusion coefficient at constant volume is given
by

eDT �
k

qcv
¼ DT þ

Dt
3

j� 1
2

� 	
: ð17Þ

Here k is the thermal conductivity and cv is the specific heat at con-
stant volume.

Now we need to specify the term q, which represents the energy
change due to vaporization. This term is approximated by (see
Appendix A for derivation)

q ¼ � GT
qcv

c
1

qðT þ C1q2Þ3
; ð18Þ

where c is the rate of vaporization

c ¼ dq
dt
: ð19Þ
2.4. Model for static contact angle

Introducing interactions between the fluid and a solid wall, the
wettability of the surface by the fluid can be modeled, too [30]. The
interaction force is defined as

Fa ¼ �GwwðxÞ
X

i

wisðxþ ciÞci; ð20Þ

where s(x + ci) is a binary function (=1 for solid and =0 for fluid
nodes).

The parameter Gw controls the strength of the intermolecular
force between wall and fluid and therefore it can influence the
wettability of the wall. In macroscopic level the static contact angle
is used to parameterize the wettability. Therefore, to make a rela-
tion between mesoscopic and macroscopic parameters, simula-
tions have been carried out by varying Gw and studying its effect
on the wettability. The simulation domain was a rectangular do-
main with periodic boundaries on its left and right boundaries.
Non-slip wall was modeled at the bottom and constant equilibrium
pressure was specified at the top of the domain. The initial density
field was set up to mimic the half of a bubble at the bottom plate
(initial densities corresponded to the gas and liquid branches of the
coexistence curve). Depending on the parameter Gw, the equilib-
rium profiles were different at the end of the simulations. In
Fig. 3 the shapes of the attached bubbles are shown as the outcome
of these simulations. These contours can be used to measure the
static contact angle. Based on these simulations a linear relation
could be deduced between Gw and the static contact angle (see
e.g. Gw = �0.06, Gw = �0.12 and Gw = �0.18 correspond to the con-
tact angle 60�, 90� and 120�, respectively).

2.5. Boundary conditions

For the simulation of heterogeneous boiling we used a rectan-
gular domain periodic in the lateral directions. Solid non-slip wall
with prescribed heat flux was used at the bottom. Constant tem-
perature and pressure were specified at the top boundaries. These
macroscopic boundaries were implemented in mesoscopic level
through the use of distribution functions.

The non-slip wall at the bottom and the temperature (heat
flux) boundaries were implemented using the method proposed
by Inamuro et al. [22]. The pressure at the top has been kept
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Fig. 3. Contact angles for various liquid–solid interaction strength Gw.
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constant using the method of Zhou and He [48]. Finally, we note
that the implementation of periodic boundaries is straightforward
in LBM.

3. Simulation results

Our numerical boiling simulations were carried out in a rectan-
gular domain. The initial density and temperature fields corre-
sponded to the saturation pressure specified at the top boundary.
A density dependent constant body force was used to represent
the gravity. For the simulation of slow horizontal flow, a constant
body force was applied in the horizontal direction, too. The initial
temperature was chosen to be T = 0.8 and the contact angle was
30� unless otherwise is specified. The corresponding surface ten-
sion can be seen in Fig. 2.

A constant heat flux was applied on the bottom plate with a
high flux core at the center. This core represents a cavity with large
surface and accordingly larger heat source than its surrounding. It
is worth noting that we do not have an initial nucleus at the begin-
ning of the simulations, thus the flux at the center must be high en-
ough to produce the first bubble. Due to the heat flux a bubble
starts to grow at the center and thermal boundary develops by heat
diffusion adjacent to the wall. When the bubble diameter achieves
its departure diameter it detaches from the wall.

The detached bubble is not necessarily a stable object. If its size
is smaller than the critical bubble radius then the bubble rises up
and its diameter decreases (condenses down) [42]. A possible final
state is that the bubble disappears before reaching the upper
boundary. On the other hand, bubbles large enough after detach-
ment can reach the upper boundary.
Fig. 4. Domain size effect. Using two different resolutions (150 � 300 and 300 � 600) no
the bubble rise is influenced by the pressure boundary at the top (left – time = 10,000,
3.1. Finite domain size effect

Preliminary calculations have been performed varying the size
of the simulation domain. Since our domain is periodic in the hor-
izontal direction, therefore lateral interactions between bubbles
are expected to influence the bubble growing and detachment pro-
cess. Having sufficiently large domain, these interactions become
negligible and the detachment process can be considered as the
one of an individual bubble. Fig. 4 shows simulation results ob-
tained in two different domain sizes (150 � 300 and 300 � 600)
and at various timesteps. For both simulations, the same heat flux
profile has been applied at the bottom boundary. Obviously, the
domain size does not influence on the bubble growing and detach-
ment process, but it has an effect on the bubble rise. This is due to
the effect of the pressure boundary at the top, rather than the lat-
eral hindering between rising bubbles. Decreasing the gravity
force, bubbles grow up to larger volumes and lateral interactions
can become more relevant. We have found no differences in the
bubble growing and detachment processes, when the bubble diam-
eter did not exceed the half of their distance i.e. Dh < 75 in a box
size 150 � 300. So results presented in this work for stagnant fluid
were obtained at this resolution.

In case of horizontal fluid flow, we doubled (300 � 300) the lat-
eral domain size in order to reduce lateral cooperation between de-
tached bubbles.

3.2. Heterogeneous boiling in stagnant liquid

Fig. 5 shows a sequence of snapshots of the bubble contour ob-
tained from simulation results by setting the dimensionless gravity
significant differences can be observed in the bubble detachment process. However,
center – time = 25,000, and right – time = 40,000).



Fig. 5. Shapes of a bubble during growing.

Fig. 6. Velocity field just before detachment of the bubble.

Fig. 7. Velocity field after detachment of the bubble.
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Fig. 8. Departure diameter as a function of gravity.
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to g = 3 � 10�5. As one can see, first a small nucleus develops at the
high heat flux core. Then the bubble starts to grow and the dry spot
increases. Achieving a maximum, the dry spot decreases and finally
a bubble neck is formed just before detachment. This neck is
important. After detachment, a tiny attached bubble remains on
the wall, turning the nucleation into a ‘‘heterogeneous” one.

In Figs. 6 and 7 the velocity fields with uniform vector length
are shown before and after detachment of the bubble, respectively.
Flow circulation can be observed on both sides of the bubble. These
circulations transfer cold liquid to the bubble neck clearly support-
ing the transient micro-convection model proposed by Haider and
Webb [15]. The liquid in the wake of the departing bubble induces
eddies, which impose a combination of front and inverted stagna-
tion flows of liquid on the surface. As a consequence of these pro-
cesses unsteady laminar forced-convection heat transfer develops
from the nucleation site, which should be taken into account in
heat transfer calculations.

It is worth noting that the circulation is asymmetric after
detachment, an observation which needs explanation in the future.

3.2.1. Diameter of the bubble at departure
From the simulation results we can determine the diameter of

the bubble at departure. Although from static force balance one
can expect that the bubble departure diameter Db satisfies the fol-
lowing relation:

Db �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
gðql � qgÞ

s
; ð21Þ

as Dhir’s review [9] calls our attention, correlations having expo-
nents g�1/3 also appear in the literature. Furthermore, the discus-
sion of Buyevich and Webbon [4] casts further doubts on the use
of a simple static force balance for bubble departure. It is also worth
mentioning that some recent developments basically takes out the
gravity from the puzzle and propose correlations without including
the gravity explicitly (see e.g. [45,25]).

Using our model we were able to systematically study the effect
of gravity on the bubble departure diameter. Varying the gravity
force, simulations were performed and the bubble departure diam-
eter was determined.

In Fig. 8 one can see the departure diameter as a function of the
gravity force. The symbols represent the simulation results and the
solid line is shown to demonstrate that the bubble diameter is pro-
portional to g�1/2 in our simulations.

Bubble diameter is sometimes correlated with the contact angle
[12], too. To study this feature we varied the parameter of the
interaction potential Gw between the solid and fluid and performed
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Fig. 9. Departure diameter as a function of the contact angle.

Fig. 10. Periodicity of bubble detachment. Snapshots were taken at 7000, 12,000,
17,000, 22,000, 27,000 and 32,000 simulation steps.
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simulations, in order to point out the relation between the bubble
departure diameter and contact angle. In Fig. 9 the bubble shapes
are shown just before detachment in case of various contact angles.
One can see that the bubble diameter is only slightly depends on
the contact angle and more importantly no general tendency can
be observed between the departure diameter and the contact
angle.

On the other hand, we could observe the speed up of the bubble
growing with increasing contact angle. Note that these observa-
tions contradict some earlier numerical simulations [9] and
accordingly, further efforts are needed to explain the observed dis-
crepancies (see next section).

3.2.2. Bubble release frequency
The bubble detachment process is quasi-periodic. Since in our

simulations the first bubble does not develop from a nucleus it
needs more time to achieve the departure diameter than bubbles
grow up later. After detachment of the first bubble a small nucleus
remains attached at the bottom wall. The first bubble drags and
transfers hot liquid to the bulk changing its temperature. Having
the nucleus at the wall and enhanced temperature in the bulk,
the development of the second bubble is more rapid than that of
the first one. After detachment of the second bubble, a nucleus re-
mains at the bottom wall initiating again a new growing and
detachment cycle. Since we apply a constant heat flux at the bot-
tom plate, therefore the temperature is changing continuously in
the domain. However, some bubble cycles can be produced with-
out significant changes in the growing and detachment process,
therefore the bubble release frequency can be estimated. For in-
stance, in Fig. 10 we show several bubble cycles including the first
cycle. These snapshots were taken at 7000, 12,000, 17,000, 22,000,
27,000 and 32,000 simulations steps, so after the first cycle the
bubble growth time is periodic with 5000 simulation steps. It is
also worth mentioning that the detached bubbles behave slightly
differently in the bulk due to the axial change in the temperature
profile.

The bubble release frequency f is usually calculated from the
correlation proposed by Zuber [49]

f�1 � Db
rgðql � qgÞ

q2
l

� ��1=4

:

Knowing the fact that the departure diameter is correlated with the
gravity force as g�1/2, it is expected that the bubble release fre-
quency is proportional to g3/4. Varying the gravity, we determined
the relation between the gravity force and the inverse of the release
frequency. In Fig. 11 symbols show the simulation results and the
solid line represents a function 5.2g�3/4. Clearly, the bubble release
period is proportional to g3/4 as it is expected.

As we have mentioned in the previous section, the increase of
the contact angle results in more rapid growing of bubbles. In
Fig. 12 we show the bubble release period as a function of the con-
tact angle for a given gravity. The symbols represent simulation re-
sults, while the solid line is an exponential fit to drive the eye. So,
the bubble release frequency increases exponentially with the con-
tact angle.

This observation can be explained by taking also into account
that the bubble departure diameter is not a function of the static
contact angle, so the growing and departure process do not change
qualitatively but they take place in another timescale. Larger con-
tact angle means larger attractive forces between the fluid and the
wall. Stronger interaction increases the residence time of the liquid
layer adjacent to the wall. Since phase transition speeds up with
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Fig. 14. Velocity vector field before detachment.

1478 G. Hazi, A. Markus / International Journal of Heat and Mass Transfer 52 (2009) 1472–1480
overheating, so the net effect of larger surface tension can be faster
growing up of bubbles. It is also worth noting that larger attractive
forces support the rewetting of the dry spot, which can give further
acceleration to the bubble cycles.

3.3. Heterogeneous boiling in slow flow

Simulations of heterogeneous boiling were carried out acceler-
ating the liquid in the horizontal direction. Using various lateral
forces we determined the bubble departure diameter as a function
of the applied lateral force.

Fig. 13 shows the shapes of the bubble as it develops in time. At
the beginning of the process a small nucleus is formed like in case
of the stagnant fluid. Then the bubble starts to grow. During grow-
ing, there is obviously a difference between the upstream and
downstream contact angles, just like in the measurements of
Kandlikar and Stumm [23]. Before detachment a bubble neck ap-
pears similarly to the simulations presented in the stagnant fluid.

The velocity vector field with uniform length is shown in Fig. 14
before detachment of the bubble. The plot shows that cold water
flows towards the downstream part of the bubble neck, which then
be dragged by the bubble and transferred to the bulk. On the other
side a circulation zone is formed which gives rise again forced con-
vection heat transfer from the wall. After detachment (Fig. 15) the
bubble moves towards the top and similarly to stagnant simula-
tions (Fig. 7), circulation zones develop on both sides of the bubble.
Due to the drag of this bubble the cold liquid from the bulk does
Fig. 13. Bubble shapes in a horizontal background flow.

Fig. 15. Periodicity in case of forced flow.
not reach anymore the downstream part of the second bubble.
Rather, it flows towards the bubble dome slowing down its
growing.

3.3.1. Diameter of the bubble at departure
Increasing the lateral force, we found that the bubble departure

diameter decreased exponentially as it can be seen in Fig. 16. This
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Fig. 16. Bubble departure diameter as a function of the lateral force.
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observation is in line with the measurement data presented in [20].
The speed up of bubble detachment is due to a combined effect of
various forces acting on the bubble in this situation.

4. Conclusion

Numerical simulation of heterogeneous boiling has been pre-
sented using the lattice Boltzmann method. Simulation results
demonstrated that the bubble departure diameter and bubble re-
lease frequency are proportional to g�1/2 and g3/4, respectively,
where g is the gravitational acceleration. In contrast with some re-
sults obtained by others we found no static contact line depen-
dence of the bubble departure diameter. On the other hand, the
bubble release frequency has shown exponential decay with the
static contact angle. This observation is explained by the speed
up of the rewetting process of the dry spot and the increased res-
idence time of the liquid layer adjacent to the wall. Both effects are
consequences of the fact that an increase in the static contact angle
is due to increasing molecular attractive forces.

Considering heterogeneous forced boiling, the development of
upstream and downstream contact angles have been demon-
strated. Simulation results shown that the bubble departure diam-
eter decreases exponentially with increasing background flow in
line with experimental observations.
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Appendix A. Derivation of the energy equation

Here we derive the form of the energy equation (16) used in this
work. Neglecting viscous dissipation the entropy balance equation
reads

qT
ds
dt
¼ rðkrTÞ: ð22Þ

Using the thermodynamic relation

T ds ¼ cv dT þ T
op
oT

� 	
v
; d ¼ cv dT � T

1
q2

op
oT

� 	
q

dq;

and substituting it into the entropy balance equation we obtain
qcv
dT
dt
¼ rðkrTÞ þ qT

1
q2

op
oT

� 	
q

dq
dt
:

Now, the term (18) is obtained by taking the derivative of the pres-
sure (12) at constant density respect to T.
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